Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that mainly acts as an inhibitor of immune functions. A lack of functional TGF-beta leads to autoimmune disease in animal models and dysregulated TGF-beta signaling is implicated in human autoimmune diseases. To define target genes that play a part in the inhibitory role of TGF-beta in the immune system, we have identified genes stimulated by TGF-beta in macrophages by gene-chip analysis. One of the TGF-beta regulated genes is carboxypeptidase D (CpD), a 180-kDa type I membrane protein. We have demonstrated that CpD is regulated by TGF-beta in various cell types of both, murine and human origin and, interestingly, is significantly downregulated in CD14 positive cells isolated from patients with lupus erythematosus (LE). Moreover, we show that downregulation of CpD leads to downmodulation of TGF-beta itself, suggesting a role for CpD in a positive feedback loop, providing further evidence for a role of this enzyme in LE. To our knowledge, this is the first report that demonstrates carboxypeptidase D as a TGF-beta target gene that is implicated in the pathogenesis of LE.