Aims: Identify natural products that effectively target antioxidative signal transduction/stress response systems [i.e., mitogen-activated protein kinase (MAPK) pathway, mitochondrial superoxide dismutase (Mn-SOD)] of fungi. Enhance activity of strobilurin or fludioxonil with discovered compounds.
Methods and results: Enhancement of antifungal activity of strobilurins, inhibitors of complex III of the mitochondrial respiratory chain, was tested using berberine hemisulfate and different phenolic compounds. The Saccharomyces cerevisiae sod2Delta, a deletion mutant lacking Mn-SOD gene, was highly sensitive to berberine and veratraldehyde. Functional complementation analysis verified these compounds target Mn-SOD. Activity of strobilurin (25-50 micromol l(-1)) was elevated on most aspergilli and Penicillium expansum by co-application with berberine or veratraldehyde (2-4 mmol l(-1)). These compounds also prevented Aspergillus fumigatus MAPK mutants (sakADelta and mpkCDelta) from escaping toxicity of fludioxonil (a phenylpyrrole fungicide potentiated by the MAPK pathway), a typical phenotype of fungal MAPK mutants.
Conclusions: Strobilurin activity or prevention of fungal escape from fludioxonil toxicity can be enhanced by co-application of certain alkaloids or phenolics.
Significance and impact of the study: Natural products can be used to target cellular stress response systems in fungal pathogens and serve as alternatives/additives to commercial antifungal agents.