Transforming growth factor-beta blocks inhibin binding to different target cell types in a context-dependent manner through dual mechanisms involving betaglycan

Endocrinology. 2007 Nov;148(11):5355-68. doi: 10.1210/en.2007-0155. Epub 2007 Jul 26.

Abstract

Inhibin antagonizes activin and bone morphogenetic protein actions by sequestering their type II receptors in high-affinity complexes with betaglycan, a coreceptor that inhibin shares with TGF-beta. To clarify the nature and extent of interactions between inhibin and TGF-beta, we therefore examined 1) the mutual competition between these ligands for binding, 2) the regulation of endogenous betaglycan expression by inhibin and TGF-beta isoforms, and 3) the consequences of such betaglycan regulation for subsequent inhibin binding in mouse Leydig (TM3), Sertoli (TM4), adrenocortical cancer (AC), and gonadotroph (LbetaT2) cell lines, chosen to model cellular targets for local and endocrine actions of inhibin. Recognized inhibin, activin, and TGF-beta binding proteins and TGF-beta/activin signaling components were expressed by all four cell types, but AC and LbetaT2 cells notably lacked the type II receptor for TGF-beta, TbetaRII. Overnight treatment of TM3 and TM4 cells with TGF-beta1 suppressed the levels of betaglycan mRNA by 73 and 46% of control and subsequent [(125)I]inhibin A binding by 64 and 41% of control (IC(50) of 54 and 92 pm), respectively. TGF-beta2 acted similarly. TGF-beta pretreatments commensurately decreased the [(125)I]inhibin A affinity labeling of betaglycan on TM3 and TM4 cells. TGF-beta isoforms as direct competitors blocked up to 60% of specific inhibin A binding sites on TM3 and TM4 cells but with 9- to 17-fold lower potency than when acting indirectly via regulation of betaglycan. Only the competitive action of TGF-beta was observed with TbetaRII-deficient AC and LbetaT2 cells. Neither inhibin A nor inhibin B regulated betaglycan mRNA or competed for binding of [(125)I]TGF-beta1 or -beta2. Thus, inhibin binding to its target cell types is controlled by TGF-beta through dual mechanisms of antagonism, the operation of which vary with cell context and display different sensitivities to TGF-beta. In contrast, TGF-beta binding is relatively insensitive to the presence of either inhibin A or inhibin B.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding, Competitive
  • Cell Membrane / drug effects
  • Cell Membrane / metabolism
  • Cells, Cultured
  • Gene Expression Regulation / drug effects
  • Inhibins / antagonists & inhibitors*
  • Inhibins / metabolism
  • Inhibins / pharmacology
  • Mice
  • Protein Binding / drug effects
  • Proteoglycans / genetics
  • Proteoglycans / metabolism
  • Proteoglycans / physiology*
  • Receptors, Transforming Growth Factor beta / genetics
  • Receptors, Transforming Growth Factor beta / metabolism
  • Receptors, Transforming Growth Factor beta / physiology*
  • Signal Transduction / drug effects
  • Signal Transduction / genetics
  • Transforming Growth Factor beta / metabolism
  • Transforming Growth Factor beta / pharmacology*

Substances

  • Proteoglycans
  • Receptors, Transforming Growth Factor beta
  • Transforming Growth Factor beta
  • betaglycan
  • Inhibins