Mesoscopic quantum phase coherence is important because it improves the prospects for handling quantum degrees of freedom in technology. Here we show that the development of such coherence can be monitored using magnetic neutron scattering from a one-dimensional spin chain of an oxide of nickel (Y2BaNiO5), a quantum spin fluid in which no classical static magnetic order is present. In the cleanest samples, the quantum coherence length is 20 nanometers, which is almost an order of magnitude larger than the classical antiferromagnetic correlation length of 3 nanometers. We also demonstrate that the coherence length can be modified by static and thermally activated defects in a quantitatively predictable manner.