Blends between chitosan (CS) and gelatin (G) with various compositions (CS/G 0/100 20/80, 40/60, 60/40 100/0 w/w) were produced, as candidate materials for biomedical applications. Different amounts of genipin (0.5 wt.% and 2.5 wt.%) were used to crosslink CS/G blends, promoting the formation of amide and tertiary amine bonds between the macromolecules and the crosslinker. The effects of composition and crosslinking on the physico-chemical properties of samples were evaluated by infrared analysis, thermogravimetry, contact angle measurements, dissolution and swelling tests. Mechanical properties of crosslinked samples were also determined through stress-strain and creep tests: samples stiffness increased with increasing the crosslinker amount and the CS content. Blend composition affected mouse fibroblasts adhesion and proliferation on substrates, depending on the crosslinker amount. Finally, crosslinked CS/G blends containing 80 wt.% G were found to support neuroblastoma cells adhesion and proliferation which made them promising candidates for uses in the field of nerve regeneration.