Seasonality of UV-radiation and vitamin D status at 69 degrees north

Photochem Photobiol Sci. 2007 Aug;6(8):903-8. doi: 10.1039/b702947k. Epub 2007 Jun 27.

Abstract

The main purpose with this study was to assess the seasonal variation in measured UV-radiation and its impact on vitamin D status throughout one year in subjects living at high latitude. Blood samples drawn from 60 volunteers (44 women, 16 men) living at Andenes (69 degrees N), Norway, were collected throughout one year, at two-month intervals. The blood samples were analysed for 25-hydroxy vitamin D [25(OH)D]. Data on dietary intakes of vitamin D, time spent in daylight, use of sun beds and sun seeking holidays were collected by using questionnaires. The ambient vitamin D effective UV-radiation was measured at a site near by Andenes, and the number of hours spent outdoors with sufficient radiation for cutaneous vitamin D production (UV-hours) was estimated for each day. The mean 25(OH)D values were significantly higher at the end of the summer and in December, 2004 and varied from 42.0 nmol L(-1) in October, 2004 and April, 2005 to around 47 nmol L(-1) in December, 2004 and September, 2005. For the whole group, a positive relationship between UV-hours and 25(OH)D was found at UV-hours>or=3.5. However, for subjects with lower 25(OH)D levels i.e. at least one blood measurement with 25(OH)D<37.5 nmol L(-1), the positive relationship were found at around 1.5 UV-hours and more, whereas for the group of subjects that had all their vitamin D values above 37.5 nmol L(-1), positive relationship was found at UV-hours>or=4.0, when adjusting for vitamin D intake, sun bed use and sun seeking holidays. The generally high dietary intakes of vitamin D, especially in winter, mask largely the effect of seasonal variation in UV-exposure, causing an atypical seasonal variation in vitamin D status. The UV-hour variable significantly predicted 25(OH)D levels in blood when adjusted for intakes and artificial UV-radiation exposure and sun holidays abroad.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Female
  • Humans
  • Male
  • Seasons*
  • Ultraviolet Rays*
  • Vitamin D / blood*

Substances

  • Vitamin D