Imaging doses from the Elekta Synergy X-ray cone beam CT system

Br J Radiol. 2007 Jun;80(954):476-82. doi: 10.1259/bjr/80446730.

Abstract

The Elekta Synergy is a radiotherapy treatment machine with integrated kilovoltage (kV) X-ray imaging system capable of producing cone beam CT (CBCT) images of the patient in the treatment position. The aim of this study is to assess the additional imaging dose. Cone beam CT dose index (CBDI) is introduced and measured inside standard CTDI phantoms for several sites (head: 100 kV, 38 mAs, lung: 120 kV, 152 mAs and pelvis: 130 kV, 456 mAs). The measured weighted doses were compared with thermoluminescent dosimeter (TLD) measurements at various locations in a Rando phantom and at patients' surfaces. The measured CBDIs in-air at the isocentre were 9.2 mGy 100 mAs(-1), 7.3 mGy 100 mAs(-1) and 5.3 mGy 100 mAs(-1) for 130 kV, 120 kV and 100 kV, respectively. The body phantom weighted CBDI were 5.5 mGy 100 mAs(-1) and 3.8 mGy 100 mAs(-1 )for 130 kV and 120 kV. The head phantom weighted CBDI was 4.3 mGy 100 mAs(-1) for 100 kV. The weighted doses for the Christie Hospital CBCT imaging techniques were 1.6 mGy, 6 mGy and 22 mGy for the head, lung and pelvis. The measured CBDIs were used to estimate the total effective dose for the Synergy system using the ImPACT CT Patient Dosimetry Calculator. Measured CBCT doses using the Christie Hospital protocols are low for head and lung scans whether compared with electronic portal imaging (EPI), commonly used for treatment verification, or single and multiple slice CT. For the pelvis, doses are similar to EPI but higher than CT. Repeated use of CBCT for treatment verification is likely and hence the total patient dose needs to be carefully considered. It is important to consider further development of low dose CBCT techniques to keep additional doses as low as reasonably practicable.

MeSH terms

  • Equipment Design
  • Equipment Safety
  • Head / diagnostic imaging
  • Humans
  • Lung / diagnostic imaging
  • Male
  • Neoplasms / diagnostic imaging
  • Neoplasms / radiotherapy
  • Particle Accelerators*
  • Phantoms, Imaging
  • Prostate / diagnostic imaging
  • Radiotherapy / instrumentation*
  • Radiotherapy Dosage*
  • Thermoluminescent Dosimetry
  • Tomography, X-Ray Computed* / instrumentation