Evidence that genetic deletion of the TNF receptor p60 or p80 inhibits Fas mediated apoptosis in macrophages

Biochem Pharmacol. 2007 Oct 1;74(7):1057-64. doi: 10.1016/j.bcp.2007.07.005. Epub 2007 Jul 10.

Abstract

Almost 19 members of the tumor necrosis factor (TNF) superfamily have been identified that interact with 29 different receptors. Whether these receptors communicate with each other is not understood. Recently, we have shown that receptor activator of NF-kappaB ligand signaling is modulated by genetic deletion of the TNF receptor. In the current report, we investigated the possibility of a cross-talk between Fas and TNF-alpha signaling pathway in macrophage cell lines derived from wild-type (WT) mice and from mice with genetic deletion of the type 1 TNF receptor (p60(-/-)), the type 2 TNF receptor (p80(-/-)), or both receptors (p60(-/-)p80(-/-)). We found that the macrophages expressing TNF receptors were highly sensitive to apoptosis induced by anti-Fas. The genetic deletion of TNF receptors, however, made the cells resistance to anti-Fas-induced apoptosis. Anti-Fas induced activation of caspase-3 and PARP cleavage in WT cells but not in TNF receptor-deleted cells. This difference was found to be independent of the expression of Fas, Fas-associated protein with death domain (FADD) or TNF receptor-associated death domain (TRADD). We found that anti-Fas induced recruitment of TNFR1 into Fas-complex. We also found that TRADD, which mediates TNF signaling, was constitutively bound to Fas receptor in TNF receptor-deleted cells but not in wild-type cells. Transient transfection of TNFR1 in TNFR1-deleted cells sensitized them to anti-Fas-induced apoptosis. Overall our results demonstrate that Fas signaling is modulated by the TNF receptors and thus provide the evidence of cross-talk between the receptors of two cytokines.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Apoptosis*
  • Cell Line
  • Gene Deletion*
  • Macrophages / cytology*
  • Macrophages / metabolism*
  • Mice
  • Mice, Knockout
  • Receptors, Tumor Necrosis Factor, Type I / deficiency*
  • Receptors, Tumor Necrosis Factor, Type I / genetics
  • Receptors, Tumor Necrosis Factor, Type I / metabolism
  • Receptors, Tumor Necrosis Factor, Type II / genetics*
  • Receptors, Tumor Necrosis Factor, Type II / metabolism
  • fas Receptor / metabolism*

Substances

  • Fas protein, mouse
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Tnfrsf1a protein, mouse
  • fas Receptor