Addiction is characterized by compulsive drug use despite adverse consequences. The precise psychobiological changes that underlie the progression from casual use to loss of control over drug-seeking and drug-taking behavior are not well understood. Here we report that short-term cocaine exposure in monkeys is sufficient to produce both selective deficits in cognitive functions dependent on the orbitofrontal cortex (OFC) concurrent with enhancements in motivational processes involving limbic-striatal regions. Additional findings from behavioral studies and analyses of the synaptic proteome provide new behavioral and biochemical evidence that cocaine-induced neuroadaptations in cortical and subcortical brain regions result in dysfunctional decision-making abilities and loss of impulse control that in combination with enhancements of incentive motivation may contribute to the development of compulsive behavior in addiction.