Backyard gardens, dump heaps, and kitchen middens are thought to have provided important venues for early crop domestication via generation of hybrids between otherwise isolated plant species. However, this process has rarely been demonstrated empirically. For the majority of polyploid crops, it remains uncertain to what extent hybridization and polyploidization preceded domestication or were precipitated by human activities. Using archaeological, ethnobotanical, geographical, and genetic data, we investigate the extent and significance of predomestication cultivation, backyard sympatry, and spontaneous hybridization for the Mimosoid legume tree Leucaena, which is used as a food crop throughout south-central Mexico. We show that predomestication cultivation was widespread, involved numerous independent transitions from the wild to cultivation, and resulted in extensive artificial sympatry of 2-6 species locally and 13 species in total. Using chloroplast and rapidly evolving nuclear-encoded DNA sequences, we demonstrate that hybridization in Leucaena has been extensive and complex, spawning a diverse set of novel hybrids as a result of juxtaposition of species in cultivation. The scale and complexity of hybridization in Leucaena is significantly greater than that documented for any other Mexican plant domesticates so far. However, there are striking parallels between Leucaena and the other major Mexican perennial domesticates Agave and Opuntia, which show very similar domestication via backyard hybridization pathways. Our results suggest that backyard hybridization has played a central role in Mesoamerican crop domestication and demonstrate that the simple step of bringing species together in cultivation can provide a potent trigger for domestication.