Recent advances concerning the genetic and biochemical basis of Duchenne and Becker muscular dystrophies have resulted in a good understanding of the etiology of these common dystrophies. An important secondary consequence of the genetic and biochemical research has been the generation of gene-based and protein-based diagnostic tools which enable a 'molecular diagnosis' for patients and their families. This review summarizes our current understanding of the genetics, biochemistry, and pathophysiology of Duchenne dystrophy, and gives an overview of the molecular diagnostic tools and their applications. Recent correlations of clinical, genetic and biochemical data have indicated that dystrophinopathies can present with a wide range of neuromuscular symptoms, and that neither male sex nor proximal weakness are diagnostic prerequisites for consideration of an underlying dystrophin abnormality.