1. The aim of the present study was to perform a descriptive study of the prevalence of the four major CYP2D6 poor metaboliser (PM) alleles (*3, *4, *5 and *6) in a Spanish population (n = 290) using a method based on a new combination of multiplex long polymerase chain reaction (PCR) and minisequencing through multiplex single base extension (SBE) analysis. 2. The method was validated using different strategies, such as allelic discrimination assay and PCR-restriction fragment length polymorphism (RFLP). 3. The allele frequencies were similar to those described for other Spanish populations, namely 0.9% (95% confidence interval (CI) 0.5-1.3), 16.4% (95% CI 14.9-18.0), 2.7% (95% CI 2.0-3.4) and 0.7% (95% CI 0.3-1.0) for the *3, *4, *5 and *6 alleles, respectively. The results were satisfactory and left little doubt as to the genotypes, which were confirmed either by allelic discrimination assay (*4 and *6) or PCR-RFLP (*3) with 100% concordance. 4. The present study corroborates the low prevalence of the most frequent polymorphism (CYP2D6*4) that leads to null CYP2D6 activity in Spain and the allelic geographical gradient between Caucasian populations in the north and south. The present study reports a technique for the detection of four polymorphisms that account for 98% of the CYP2D6 defect alleles. This multiplex long PCR-SBE technique is a combination of several known methods to genotype CYP2D6 alleles (*3, *4, *5 and*6). Given the importance of CYP2D6 in drug metabolism and the need to genotype a large number of samples, we believe that this method will find broad application.