The development of nanoparticulate contrast agents is providing an increasing contribution to the field of diagnostic and molecular imaging. Such agents provide several advantages over traditional compounds. First, they may contain a high payload of the contrast-generating material, which greatly improves their detectability. Second, multiple properties may be easily integrated within one nanoparticle to allow its detection with several imaging techniques or to include therapeutic qualities. Finally, the surface of such nanoparticles may be modified to improve circulation half-lives or to attach targeting groups. Magnetic resonance imaging and optical techniques are highly complementary imaging methods. Combining these techniques would therefore have significant advantages and may be realized through the use of nanoparticulate contrast agents. This review gives a survey of the different types of fluorescent and magnetic nanoparticles that have been employed for both magnetic resonance and optical imaging studies.