Lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with an extensive shutoff of host gene expression, mediated chiefly by accelerated mRNA turnover due to expression of the viral SOX protein. We have previously identified a small number of host mRNAs that can escape SOX-mediated degradation. Here we present a detailed, transcriptome-wide analysis of host shutoff, with careful microarray normalization to allow rigorous determination of the magnitude and extent of transcript loss. We find that the extent of transcript reduction represents a continuum of susceptibilities of transcripts to virus-mediated shutoff. Our results affirm that the levels of over 75% of host transcripts are substantially reduced during lytic infection, but also show that another approximately 20% of cellular mRNAs declines only slightly (less than 2-fold) during the course of infection. Approximately 2% of examined cellular genes are strongly upregulated during lytic infection, most likely due to transcriptional induction of mRNAs that display intrinsic SOX-resistance.