Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor

Mol Cell Biol. 2007 Nov;27(21):7414-24. doi: 10.1128/MCB.00887-07. Epub 2007 Sep 4.

Abstract

Changes in oxygen levels cause widespread changes in gene expression in organisms ranging from bacteria to humans. In Saccharomyces cerevisiae, this response is mediated in part by Hap1, originally identified as a heme-dependent transcriptional activator that functions during aerobic growth. We show here that Hap1 also plays a significant and direct role under hypoxic conditions, not as an activator, but as a repressor. The repressive activity of Hap1 controls several genes, including three ERG genes required for ergosterol biosynthesis. Chromatin immunoprecipitation experiments showed that Hap1 binds to the ERG gene promoters, while additional experiments showed that the corepressor Tup1/Ssn6 is recruited by Hap1 and is also required for repression. Furthermore, mutational analysis demonstrated that conserved Hap1 binding sites in the ERG5 5' regulatory region are required for repression. The switch of Hap1 from acting as a hypoxic repressor to an aerobic activator is determined by heme, which is synthesized only in the presence of oxygen. The ability of Hap1 to function as a ligand-dependent repressor and activator is a property shared with mammalian nuclear hormone receptors and likely allows greater transcriptional control by Hap1 in response to changing oxygen levels.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Aerobiosis / drug effects
  • Anaerobiosis / drug effects
  • Base Sequence
  • Binding Sites
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism
  • Cytochromes c / genetics
  • Cytochromes c / metabolism
  • DNA-Binding Proteins / metabolism*
  • Gene Expression Regulation, Fungal / drug effects
  • Genes, Fungal
  • HSP70 Heat-Shock Proteins / metabolism
  • HSP90 Heat-Shock Proteins / metabolism
  • Heme / metabolism*
  • Heme / pharmacology
  • Molecular Sequence Data
  • Nuclear Proteins / metabolism
  • Oligonucleotide Array Sequence Analysis
  • Oxidoreductases / genetics
  • Oxidoreductases / metabolism
  • Promoter Regions, Genetic / genetics
  • Protein Binding / drug effects
  • Repressor Proteins / metabolism*
  • Saccharomyces cerevisiae / drug effects
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Trans-Activators / metabolism*
  • Transcription Factors
  • Transcription, Genetic* / drug effects

Substances

  • CYC1 protein, S cerevisiae
  • DNA-Binding Proteins
  • HAP1 protein, S cerevisiae
  • HSP70 Heat-Shock Proteins
  • HSP90 Heat-Shock Proteins
  • Nuclear Proteins
  • Repressor Proteins
  • Saccharomyces cerevisiae Proteins
  • TUP1 protein, S cerevisiae
  • Trans-Activators
  • Transcription Factors
  • Heme
  • Cytochromes c
  • Cytochrome P-450 Enzyme System
  • Oxidoreductases
  • ERG5 protein, S cerevisiae