Galectin-3 (Gal-3) is a multifunctional beta-galactoside-binding lectin that senses self-derived and microbial glycoconjugates. Although Gal-3 is important in immune reactions and host defense in some experimental models, the function of Gal-3 during helminthic diseases (e.g., schistosomiasis) is still elusive. We show that, compared to wild-type Schistosoma mansoni-infected mice, infected Gal-3-/- mice have a reduced number of T and B lymphocytes in the spleen, develop reduced liver granulomas at 7 weeks (acute phase) and 14 weeks (chronic phase) postinfection, and mount a biased cellular and humoral Th1 response. In an attempt to understand this latter phenomenon, we studied the role of endogenous Gal-3 in dendritic cells (DCs), the most potent antigen-presenting cells, both in vitro and in vivo. Although Gal-3 deficiency in DCs does not impact their differentiation and maturation processes, it greatly influences the strength (but not the nature) of the adaptive immune response that they trigger, suggesting that Gal-3 deficiency in some other cell types may be important during murine schistosomiasis. As a whole, this study implies that Gal-3 is a modulator of the immune/inflammatory responses during helminthic infection and reveals for the first time that Gal-3 expression in DCs is pivotal to control the magnitude of T-lymphocyte priming.