We previously reported that 43 (58%) of 75 head and neck squamous cell carcinoma (HNSCC) tumors harbor increased epidermal growth factor receptor (EGFR) gene copy numbers as determined by fluorescent in situ hybridization. In this study, an increased EGFR copy number was associated with decreased progression-free survival and overall survival of HNSCC patients. However, activated EGFR protein levels are difficult to quantify by immunohistochemistry and are subject to dynamic regulation, specifically receptor downregulation on ligand binding. Therefore, we generated an activated EGFR gene expression signature in an in vitro HaCaT keratinocyte model system to further study genes involved in the EGFR signaling pathway in HNSCC. The results from this model system have suggested that the activated EGFR signature might reflect the activated state of the EGFR pathway in human HNSCC tumors and that it is associated with the increased EGFR gene copy number by fluorescent in situ hybridization. Furthermore, the activated EGFR signature has provided additional leads, because they are related to co-regulated molecular pathways and associated gene products on activation of EGFR. These could be exploited to refine and optimize combination therapies to be used in conjunction with available EGFR inhibitors in individual HNSCC patients.