Extracellular ATP facilitates the release of dopamine via P2 receptor activation in parts of the mesolimbic system. To characterize P2X/Y receptor subtypes in the developing dopaminergic system, their expression in organotypic slice co-cultures including the ventral tegmental area/substantia nigra (VTA/SN) complex and the prefrontal cortex (PFC) was studied in comparison to the receptor expression in 3-5 day-old and adult rats. Reverse transcriptase-polymerase chain reaction (RT-PCR) with specific primers for the P2X(1,2,3,4,6,7) and P2Y(1) receptors in the tissue extracts of organotypic co-cultures revealed the presence of the P2X and P2Y receptor mRNAs investigated. Multiple immunofluorescence labeling of the P2X/Y receptor protein indicated differences in the regional expression in the organotypic co-cultures after 10 days of cultivation (VTA/SN, P2X(1,2,3,4,6,7), P2Y(1,6,12); PFC, P2X(1,3,4,6,7), P2Y(1,2,4,6,12)). At postnatal days 3-5, an immunofluorescence mostly comparable to that of adult rats was observed (VTA/SN and PFC: P2X(1,2,3,4,6,7), P2Y(1,2,4,6,12)). There was one important exception: the P2X(7) receptor immunocytochemistry was not found in adult tissue, suggesting a potential role of this receptor in the development. Only few P2 receptors (e.g. P2X(1), P2Y(1)) were expressed at fibers interconnecting the dopaminergic VTA/SN with the PFC in the organotypic co-cultures. The treatment of the cultures with the ATP analogues 2-methylthio-ATP and alpha,beta-methylene-ATP induced an increase in axonal outgrowth and fiber density, which could be inhibited by pre-treatment with the P2X/Y receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid. The co-localization of the dopamine-(D1) receptor with the P2X(1) receptor in organotypic slice cultures was evident. In the PFC of the co-cultures, and that of young but not adult rats, a number of tyrosine hydroxylase (TH)-positive cells also possessed P2Y(1)-immunoreactivity (IR). Additionally, a strong P2Y(1)-IR was observed on astrocytes. The present results show a time-, region- and cell type-dependent in vitro and in vivo expression pattern of different P2 receptor subtypes in the dopaminergic system indicating the involvement of ATP and its receptors in neuronal development and growth.