The electronic structure of pol(ethylene oxide) (PEO) in a thin (<1 mu) film sample was experimentally probed by X-ray emission spectroscopy. Both nonresonant and resonant X-ray emission spectra were simulated by using density functional theory (DFT) applied to four different models representing different conformations in the polymer. Calculated spectra were compared with experimental results for the PEO film. It was found that the best fit was obtained with the polymer conformation in PEO electrolytes from which the salt (LiMF6, M = P, As, or Sb) had been removed. This conformation is different from the crystalline bulk polymer and implies that film casting, commonly used to form electrolytes for Li polymer batteries, induces the same conformation in the polymer not depending upon the presence of salt.