A testicular dysgenesis-like syndrome is induced in rats by fetal exposure to di(n-butyl) phthalate (DBP). A key feature of this is the formation of focal dysgenetic areas comprising malformed seminiferous cords/tubules and intratubular Leydig cells (ITLC), but how and why these arise remains unclear. The present study has used combinations of cell-specific markers and immunohistochemistry to address this. The results show that focal dysgenetic areas and ITLC first appear postnatally at 4-10 days of age, but this only occurs in treatment groups in which formation of fetal Leydig cell aggregation is induced between e17.5 and e21.5. Extreme variability in the formation and size of the Leydig cell aggregates probably accounts for the equally extreme variation in occurrence and size of focal dysgenetic areas postnatally. DBP-induced fetal Leydig cell aggregation traps Sertoli and other cells within the aggregates, but it is unclear why this happens nor why cords fail to form prenatally in these cell mixtures but do elsewhere in the fetal testis. The present studies show that differentiation of the fetal Leydig cells is drastically delayed at e15.5 after DBP exposure, which may be indicative of a wider delay in testis cell development and organisation, and this might account for some of the unexplained findings.