The purpose of this study is to determine whether the ethyl acetate fraction (EAF) from the aerial part of Cimicifuga foetida Linnaeus possesses the anti-tumor action on hepatoma, and therefore, provide evidence for the traditional use of the plant as a detoxification agent. EAF was extracted and its cytotoxicity was evaluated on a panel of Hepatocytes by MTT assay. The IC(50) values of EAF on HepG2, R-HepG2 and primary cultured normal mouse hepatocytes were 21, 43 and 80 microg/mL, respectively. Morphology observation, Annexin V-FITC/PI staining, cell cycle analysis and western blot were used to further elucidate the cytotoxic mechanism of EAF. EAF induced G(0)/G(1)cell cycle arrest at lower concentration (25 microg/mL), and triggered G(2)/M arrest and apoptosis at higher concentrations (50 and 100 microg/mL, respectively). An increase in the ratio of Bax/Bcl-2, activation of downstream effector Caspase 3, and cleavage of poly-ADP-ribose polymerase (PARP) were implicated in EAF-induced apoptosis. In addition, EAF inhibited the growth of the implanted mouse H(22) tumor in a dose-dependent manner with the growth inhibitory rate of 63.32% at 200 mg/kg. In conclusion, EAF may potentially find use as a new therapy for the treatment of hepatoma.