GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration

Phys Med Biol. 2007 Oct 7;52(19):5771-83. doi: 10.1088/0031-9155/52/19/003. Epub 2007 Sep 10.

Abstract

This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup--up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration.

Publication types

  • Evaluation Study

MeSH terms

  • Algorithms*
  • Phantoms, Imaging
  • Radiographic Image Enhancement / methods*
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*
  • Tomography, Spiral Computed / instrumentation
  • Tomography, Spiral Computed / methods*