Besides dopaminergic deficiency, other neurotransmitter systems such as noradrenergic nuclei are affected in Parkinson's disease. Locus coeruleus degeneration might influence the response to dopamine replacement and the presence of long-term complications such as dyskinesias. In this scenario of noradrenergic and dopaminergic neurodegeneration, behavioural effects induced by dopaminergic-interacting drugs are incompletely known. We investigated whether noradrenergic lesion modulates the levodopa (l-DOPA) response and modifies the response to adenosine antagonists and its interaction with l-DOPA. We examined the motor behaviour induced by: 1) subthreshold doses of l-DOPA (2mg/kg, i.p.), 2) the adenosine-receptor antagonist caffeine (10mg/kg), and 3) the combination of l-DOPA (2mg/kg) and caffeine (10mg/kg). Each study was done in two experimental conditions: a) rats with unilateral 6-OHDA lesion and b) rats with a lesion of the nigrostriatal pathway (6-OHDA) combined with selective denervation of locus coeruleus-noradrenergic terminal fields by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). While only 28% of the 6-OHDA-lesioned animals presented circling behaviour after l-DOPA challenge, all (100%) double-denervated animals rotated after the same l-DOPA dose (p<0.05). No statistical differences in the percentage of rotating animals were observed between single- and double-denervated rats after caffeine challenge. Combined l-DOPA-caffeine challenge produced rotational behaviour in all (100%) single- and double-denervated rats. No differences in total turns were observed between single- and double-denervated animals in each treatment condition. These findings suggest that additional noradrenergic denervation selectively decreases the motor threshold to l-DOPA treatment without modifying the magnitude or the pattern of the motor response to adenosinergic antagonism.