Purpose: The current tumor, node, metastasis system needs refinement to improve its ability to predict survival of patients with non-small-cell lung cancer (NSCLC) treated with (chemo)radiation. In this study, we investigated the prognostic value of tumor volume and N status, assessed by using fluorodeoxyglucose-positron emission tomography (PET).
Patients and methods: Clinical data from 270 consecutive patients with inoperable NSCLC Stages I-IIIB treated radically with (chemo)radiation were collected retrospectively. Diagnostic imaging was performed using either integrated PET-computed tomography or computed tomography and PET separately. The Kaplan-Meier method, as well as Cox regression, was used to analyze data.
Results: Univariate survival analysis showed that number of positive lymph node stations (PLNSs), as well as N stage on PET, was associated significantly with survival. The final multivariate Cox model consisted of number of PLNSs, gross tumor volume (i.e., volume of the primary tumor plus lymph nodes), sex, World Health Organization performance status, and equivalent radiation dose corrected for time; N stage was no longer significant.
Conclusions: Number of PLNSs, assessed by means of fluorodeoxyglucose-PET, was a significant factor for survival of patients with inoperable NSCLC treated with (chemo)radiation. Risk stratification for this group of patients should be based on gross tumor volume, number of PLNSs, sex, World Health Organization performance status, and equivalent radiation dose corrected for time.