We demonstrate a new attractive approach for ubiquitous quantitative chemical or biological sensing when analog signals are acquired from conventional optical disk drives, and these signals are used for quantitative detection of optical changes of sensing films deposited on conventional CD and DVD optical disks. Our developed analytical model of the operation of this Lab-on-DVD system describes the optical response of sensing films deposited onto the read surface of optical disks by taking into account the practical aspects of system performance that include possible reagent leaching effects, water sampling (delivering) efficiency, and possible changes of the film morphology after water removal. By applying a screen-printing process, we demonstrated a laboratory-scale automated production of sensing films with an average thickness of approximately 10 microm and a thickness relative standard deviation of <3% across multiple films. Finally, we developed a system for delivery of water-sample volumes to sensing films on the disk that utilized a multifunctional jewel case assembly.