We demonstrate a new solid-state synthesis route to prepare calcium borohydride, Ca(BH4)2, by reacting a ball-milled mixture of CaB(6) and CaH(2) in a molar ratio of 1:2 at 700 bar of H2 pressure and 400-440 degrees C. Moreover, doping with catalysts was found to be crucial to enhance reaction kinetics. Thermogravimetric analysis and differential scanning calorimetry revealed a reversible low-temperature to high-temperature endothermic phase transition at 140 degrees C and another endothermic phase transition at 350-390 degrees C associated with hydrogen release upon formation of CaB(6) and CaH(2), as was evident from X-ray diffraction analysis. Thus, since Ca(BH(4))(2) here is shown to be prepared from its anticipated decomposition products, the conclusion is that it has potential to be utilized as a reversible hydrogen storage material. The theoretical reversible capacity was 9.6 wt % hydrogen.