Apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), moves between HDL and triacylglycerol-rich lipoproteins during metabolism. We reported that apoA-I is conformationally flexible at the triolein/water (TO/W) interface, partially desorbing at low surface pressure (Pi) but totally desorbing at Pi > 19 mN/m. We now report the different behavior of the N- and C-terminal peptides of apoA-I ([1-44]apoA-I and [198-243]apoA-I) at the TO/W interface. While both peptides are surface active, [198-243]apoA-I is more stable at the TO/W interface. At equilibrium interfacial tension both peptides desorb from the interface when compressed, but [1-44]apoA-I is pushed off at 13 mN/m while [198-243]apoA-I can withstand Pi = 16 mN/m. Neither peptide is very elastic or flexible at the interface. Only at small changes of area (<8%), fast oscillations (4 and 8 s periods), and relatively low concentrations (2 x 10(-7) M) do these peptides show elastic behavior but with a relatively small modulus compared to that of apoA-I. When mixed together, they appear not to interact on the surface. [1-44]ApoA-I binds more rapidly but is replaced by [198-243]apoA-I within minutes. We suggest that when apoA-I partially desorbs from lipoprotein surfaces during lipid metabolism, the N-terminal is the first to detach while the C-terminal remains on the interface and only desorbs at higher pressures. Thus, the observations that different domains of apoA-I adsorb or desorb with small variations in surface pressure make apoA-I a very flexible protein with multiple functions, one of which is to stabilize surface pressure during lipoprotein metabolism as lipids move in and out of the lipoprotein surface.