The aim of this work was to develop a fast method using capillary electrophoresis for the determination of creatinine in human urine samples. The pH and constituents of the background electrolyte were selected by inspection of effective mobility of creatinine and candidate urine interferents versus pH curves. The tendency of the analyte to undergo electromigration dispersion and the buffer capacity were evaluated by the Peakmaster software and considered in the optimization of the background electrolyte, composed by 10 mmol L(-1) tris(hydroxymethyl)aminomethane and 20 mmol L(-1) 2-hydroxyisobutyric acid (HIBA) at pH 3.93. Separation was conducted in a fused-silica capillary (32 cm total length and 8.5 cm effective length, 50 microm I.D.), with short-end injection configuration and direct UV detection at 215 nm. The migration time of creatinine was only 22s. A few figures of merit of the method are as follows: good linearity in the concentration interval of 5-70 mg L(-1) (R(2)>0.99), limit of detection of 0.5 mg L(-1), inter-day precision better than 2.7% (n=9) and recovery in the range 99.0-103.7% at three concentration levels (50, 100 and 150 mg L(-1)). Urine samples were prepared by deproteination with acetonitrile (1:3 sample:acetonitrile, v/v), centrifugation and dilution of a deproteinated aliquot with 12.5 mmol L(-1) HIBA (1:4, v/v). Creatinine concentrations between 489 and 1063 mg L(-1) were obtained in the urine of four healthy volunteers.