Experimental studies were carried out on an Antarctic isolate of the heterotrophic nanoflagellate Paraphysomonas imperforata to examine the efficiency of incorporation and remineralization of nitrogen and phosphorus from bacterial prey. Experiments were carried out over a temperature range from ambient Antarctic temperature (0 degrees C) to 10 degrees C. Temperature had a marked effect on the maximal growth rate of the phagotrophic nanoflagellate. Growth rate in the presence of high prey abundance ranged from 0.6 day(-1) at 0 degrees C to 2.6 day(-1) at 10 degrees C. In contrast, temperature had no discernable effect on the efficiencies of incorporation and remineralization of major nutrients by P. imperforata. The efficiencies of phosphorus and nitrogen incorporation from prey biomass averaged over the temperature range examined were 58 and 39%, respectively, for the two elements. Ammonium and phosphate were the dominant forms of dissolved nitrogen and phosphorus appearing in the culture medium during the grazing phase of the experiments. Overall, dissolved organic nitrogen and phosphorus constituted minor components of these elements released by the grazing activities of the protist. The results of this study indicated that incorporation/remineralization of nitrogen and phosphorus contained in prey was relatively unaffected by culture temperature in this heterotrophic nanoflagellate, although low temperature significantly depressed its growth rate. This finding has important implications for energy utilization and elemental cycling in perennially cold ecosystems and is at odds with conclusions that have been reached in some previous studies regarding the growth efficiency of phagotrophic Antarctic protists.