Some observations have suggested that cells from the central nervous system (CNS) could present exogenous antigens on major histocompatibility complex (MHC) class I molecules to CD8(+) T cells (a process called cross-presentation). Microglia are the major myeloid immunocompetent cells of the CNS. When activated, following the injury of the nervous parenchyma, they become fully competent antigen-presenting cells (APC) that prime CD4(+) T lymphocytes. We therefore tested the cross-presentation capacity of murine microglia. We report that a microglial cell line (C8-B4), neonatal microglia, and interestingly adult microglia cross-present soluble exogenous antigen (ovalbumin) to a OVA-specific CD8(+) T-cell hybridoma and cross-prime OVA-specific naive OT-1 CD8(+) T cells. In both these cases, C8-B4 and neonatal microglia cross-present OVA as well as peritoneal macrophages. Although cross-presentation by adult microglia is less efficient, it is increased by GM-CSF and CpG oligodeoxynucleotide (ODN) stimulation. Using microglial cells either exposed to an inhibitor of proteasome, lactacystin, or purified from TAP(-/-) mice, we demonstrate that the microglia cross-present antigen in proteasome- and TAP-dependant pathways, respectively. Last, microglia purified from adult mice injected intracerebrally with OVA efficiently stimulate OVA-specific CD8(+) T cells, thereby showing that microglia take up and process exogenous antigen into MHC class I in vivo. This first demonstration of the cross-presentation property of microglia offers novel therapeutic approaches to modulate CD8 T-cell responses in the brain.
(c) 2007 Wiley-Liss, Inc.