Short sequence motifs, overrepresented in mammalian conserved non-coding sequences

BMC Genomics. 2007 Oct 18:8:378. doi: 10.1186/1471-2164-8-378.

Abstract

Background: A substantial fraction of non-coding DNA sequences of multicellular eukaryotes is under selective constraint. In particular, approximately 5% of the human genome consists of conserved non-coding sequences (CNSs). CNSs differ from other genomic sequences in their nucleotide composition and must play important functional roles, which mostly remain obscure.

Results: We investigated relative abundances of short sequence motifs in all human CNSs present in the human/mouse whole-genome alignments vs. three background sets of sequences: (i) weakly conserved or unconserved non-coding sequences (non-CNSs); (ii) near-promoter sequences (located between nucleotides -500 and -1500, relative to a start of transcription); and (iii) random sequences with the same nucleotide composition as that of CNSs. When compared to non-CNSs and near-promoter sequences, CNSs possess an excess of AT-rich motifs, often containing runs of identical nucleotides. In contrast, when compared to random sequences, CNSs contain an excess of GC-rich motifs which, however, lack CpG dinucleotides. Thus, abundance of short sequence motifs in human CNSs, taken as a whole, is mostly determined by their overall compositional properties and not by overrepresentation of any specific short motifs. These properties are: (i) high AT-content of CNSs, (ii) a tendency, probably due to context-dependent mutation, of A's and T's to clump, (iii) presence of short GC-rich regions, and (iv) avoidance of CpG contexts, due to their hypermutability. Only a small number of short motifs, overrepresented in all human CNSs are similar to binding sites of transcription factors from the FOX family.

Conclusion: Human CNSs as a whole appear to be too broad a class of sequences to possess strong footprints of any short sequence-specific functions. Such footprints should be studied at the level of functional subclasses of CNSs, such as those which flank genes with a particular pattern of expression. Overall properties of CNSs are affected by patterns in mutation, suggesting that selection which causes their conservation is not always very strong.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Conserved Sequence*
  • DNA / genetics*
  • Humans

Substances

  • DNA