Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering

Conf Proc IEEE Eng Med Biol Soc. 2006:2006:1556-9. doi: 10.1109/IEMBS.2006.259243.

Abstract

Due to the large transmural variation in transmembrane potential following the application of strong electric shocks, it is thought that fluorescent photon scattering from depth plays a significant role in optical signal modulation at shock-end. For the first time, a model of photon scattering is used to accurately synthesize fluorescent signals over the irregular geometry of the rabbit ventricles following the application of such strong shocks. A bidomain representation of electrical activity is combined with finite element solutions to the photon diffusion equation, simulating both the excitation and emission processes, over an anatomically-based model of rabbit ventricular geometry and fiber orientation. Photon scattering from within a 3D volume beneath the epicardial optical recording site is shown to transduce differences in transmembrane potential within this volume through the myocardial wall. This leads directly to a significantly modulated optical signal response with respect to that predicted by the bidomain simulations, distorting epicardial virtual electrode polarization produced at shock-end. Furthermore, we show that this degree of distortion is very sensitive to the optical properties of the tissue, an important variable to consider during experimental mapping set-ups. These findings provide an essential first-step in aiding the interpretation of experimental optical mapping recordings following strong defibrillation shocks.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Artifacts
  • Body Surface Potential Mapping / methods*
  • Computer Simulation
  • Electrodes
  • Heart Conduction System / physiology*
  • Microscopy, Fluorescence / methods*
  • Models, Cardiovascular*
  • Photons
  • Rabbits
  • Reproducibility of Results
  • Scattering, Radiation
  • Sensitivity and Specificity
  • Spectrometry, Fluorescence / methods*