With the completion of sequencing projects for several parasite genomes, efforts are ongoing to make sense of this mass of information in terms of the gene products encoded and their interactions in the growth, development and survival of parasites. The emerging science of systems biology aims to explain the complex relationship between genotype and phenotype by using network models. One area in which this approach has been particularly successful is in the modeling of metabolism. With an accurate picture of the set of metabolic reactions encoded in a genome, it is now possible to identify enzymes or transporters that might be viable targets for new drugs. Because these predictions greatly depend on the quality and completeness of the genome annotation, there are substantial efforts in the scientific community to increase the numbers of metabolic enzymes identified. In this review, we discuss the opportunities for using metabolic reconstruction and analysis tools in parasitology research, and their applications to protozoan parasites.