Exercise is generally recommended for individuals with type 1 diabetes mellitus since it is associated with numerous physiological and psychological benefits. However, participation in exercise can also increase the risk of experiencing severe hypoglycaemia, a potentially life-threatening condition, both during exercise and for up to 31 hours of recovery. Fortunately, this risk of exercise-induced hypoglycaemia can be managed by adjusting the dosage of self-administered exogenous insulin and nutritional intake to maintain blood glucose levels within the normal physiological range. In order to provide evidence-based guidelines to allow individuals with type 1 diabetes to safely participate in a range of physical activities, much previous research has focused on understanding the metabolic and hormonal responses to exercise. Consequently, it is well established that moderate- and high-intensity exercise have a contrasting effect on blood glucose levels and require different management strategies to maintain euglycaemia. On the other hand, the response of blood glucose levels to a combination of moderate- and high-intensity exercise, a pattern of physical activity referred to as intermittent high-intensity exercise (IHE) has received little research attention. This is despite the fact that this type of exercise characterises the activity patterns of most team and field sports as well as spontaneous play in children. The lack of previous research into the glucoregulatory responses to IHE is reflected in existing guidelines, which either do not address IHE, or suggest similar management strategies for blood glucose levels during and after IHE as for moderate- or high-intensity exercise alone. It is important, however, to appreciate that there are fundamental differences in the metabolic responses to intermittent exercise compared with other types of exercise. Recently, a series of investigations into the glucoregulatory responses to IHE that replicates the work-to-recovery ratios observed in team and field sports have been conducted. The findings of these studies do not support the existing recommendations for managing blood glucose levels during IHE. Hence, the purpose of this article is to discuss the results of these recent studies, which provide new insight into the management of blood glucose levels during and after IHE and have implications for current guidelines aimed at minimising the risk of hypoglycaemia. These findings, along with future investigations, should provide valuable information for health professionals and individuals with type 1 diabetes on the management of blood glucose levels during and after exercise to allow for safe participation in intermittent activities along with their peers.