We investigated the nuclear localization-like sequence KKRPKP, corresponding to the residues 23-28 in the mouse prion protein (mPrP), for its membrane perturbation activity, by comparing effects of two mPrP-derived peptides, corresponding to residues 1-28 (mPrPp(1-28)) and 23-50 (mPrPp(23-50)), respectively. In erythrocytes, mPrPp(1-28) induced approximately 60% haemoglobin leakage after 30 min, whereas mPrPp(23-50) had negligible effects. In calcein-entrapping, large unilamellar vesicles (LUVs), similar results were obtained. Cytotoxicity estimated by lactate dehydrogenase leakage from HeLa cells, was found to be approximately 12% for 50 microM mPrPp(1-28), and approximately 1% for 50 microM mPrPp(23-50). Circular dichroism spectra showed structure induction of mPrPp(1-28) in the presence of POPC:POPG (4:1) and POPC LUVs, while mPrPp(23-50) remained a random coil. Membrane translocation studies on live HeLa cells showed mPrPp(1-28) co-localizing with dextran, suggesting fluid-phase endocytosis, whereas mPrPp(23-50) hardly translocated at all. We conclude that the KKRPKP-sequence is not sufficient to cause membrane perturbation or translocation but needs a hydrophobic counterpart.