A series of 29 madurahydroxylactone derivatives was evaluated for dual inhibition of human immunodeficiency virus type 1 (HIV-1) integrase and RNase H. While most of the compounds exhibited similar potencies for both enzymes, two of the derivatives showed 10- to 100-fold-higher selectivity for each enzyme, suggesting that distinct pharmacophore models could be generated. This study exemplifies the common and divergent structural requirements for the inhibition of two structurally related HIV-1 enzymes and demonstrates the importance of systematically screening for both integrase and RNase H when developing novel inhibitors.