Conditionally replicating adenoviruses (CRAd) 'armed' with prodrug-activating genes have the potential to augment the efficacy of virotherapy. An Escherichia coli nitroreductase (NTR) gene (nfsB) was introduced into the E3B region of the systemically active CRAd ONYX-411, to produce ONYX-411(NTR), which had single agent oncolytic activity equivalent to unarmed virus in vitro and in vivo. A fluorogenic probe (SN 29884) developed to monitor NTR expression revealed robust, durable NTR expression in ONYX-411(NTR) infected neoplastic but not primary human cell lines. NTR expression occurred >24 h post-infection in parallel with fiber and was sensitive to ara-C indicating transcriptional linkage to viral replication. A novel NTR prodrug, the 3,5-dinitrobenzamide-2-bromomustard SN 27686, was shown to be more dose potent and selective than CB 1954 and provided a superior bystander effect in 3D multicellular layer cultures. Its water-soluble phosphate ester SN 28343 was substantially more active than CB 1954 against xenografts containing a minority of stable NTR-expressing cells. A single intravenous dose of ONYX-411(NTR) (10(8) PFU) to nude mice bearing large H1299 xenografts (>350 mm(3)) resulted in tumor-specific NTR expression which increased over time. Despite extensive viral spread by day 14, this conservative virus dose and schedule was unable to control such well-established tumors. However, subsequent administration of SN 28343 resulted in the majority of mice (62.5%) being tumor-free on day 120.