In 3-dimensional (3D) conformal radiotherapy of parotid gland tumors, little effort is made to avoid the auditory system or the oral cavity. Damage may occur when the ear is located inside the treatment field. The purpose of this study was to design and evaluate an intensity-modulation radiotherapy (IMRT) class solution, and to compare this technique to a 3D conformal approach with respect to hearing loss. Twenty patients with parotid gland cancer were retrospectively planned with 2 different techniques using the original planning target volume (PTV). First, a conventional technique using a wedged beam pair was applied, yielding a dose distribution conformal to the shape of the PTV. Next, an IMRT technique using a fluence map optimization with predefined constraints was designed. A dose of 66 Gy in the PTV was given at the International Commission on Radiation Units and Measures (ICRU) dose prescription point. Dose-volume histograms of the PTV and organs at risk (OARs), such as auditory system, oral cavity, and spinal cord, were compared. The dose in the OARs was lower in the IMRT plans. The mean volume of the middle ear receiving a dose higher than 50 Gy decreased from 66.5% to 33.4%. The mean dose in the oral cavity decreased from 19.4 Gy to 16.6 Gy. The auditory system can be spared if the distance between the inner ear and the PTV is 0.6 cm or larger, and if the overlap between the middle ear and the PTV is smaller than 10%. The maximum dose in the spinal cord was below 40 Gy in all treatment plans. The mean volume of the PTV receiving less than 95% of the prescribed dose increased in the IMRT plan slightly from 3.3% to 4.3 % (p = 0.01). The mean volume receiving more than 107% increased from 0.9% to 2.5% (p = 0.02). It can be concluded that the auditory system, as well as the oral cavity, can be spared with IMRT, but at the cost of a slightly larger dose inhomogeneity in the PTV. The IMRT technique can therefore, in most cases, be recommended as the treatment of choice for the irradiation of parotid tumors.