In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies

Clin Cancer Res. 2007 Nov 15;13(22 Pt 1):6639-48. doi: 10.1158/1078-0432.CCR-07-1119. Epub 2007 Nov 2.

Abstract

Purpose: Epidermal growth factor receptors (EGFR) play an important role in tumorigenesis and, therefore, have become targets for new molecular therapies. Here, we use a "cocktail" of optically labeled monoclonal antibodies directed against EGFR-1 (HER1) and EGFR-2 (HER2) to distinguish tumors by their cell surface expression profiles.

Experimental design: In vivo imaging experiments were done in tumor-bearing mice following s.c. injection of A431 (overexpressing HER1), NIH3T3/HER2+ (overexpressing HER2), and Balb3T3/DsRed (non-expression control) cell lines. After tumor establishment, a cocktail of optically labeled antibodies: Cy5.5-labeled cetuximab (anti-HER1) and Cy7-labeled trastuzumab (anti-HER2) was i.v. injected. In vivo and ex vivo fluorescence imaging was done. For comparison with radionuclide imaging, experiments were undertaken using (111)Indium-labeled antibodies. Additionally, a "blinded" diagnostic study was done for mice bearing one tumor type.

Results: In vivo spectral fluorescent molecular imaging of 14 mice with three tumor types clearly differentiated tumors using the cocktail of optically labeled antibodies both in vivo and ex vivo. Twenty-four hours after injection, A431 and NIH3T3/HER2+ tumors were detected distinctly by their peak on Cy5.5 and Cy7 spectral images, respectively; radionuclide imaging was unable to clearly distinguish tumors at this time point. In blinded single tumor experiments, investigators were able to correctly diagnose a total of 40 tumors.

Conclusion: An in vivo imaging technique using an antibody cocktail simultaneously differentiated two tumors expressing distinct EGFRs and enabled an accurate characterization of each subtype.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Antibodies, Monoclonal* / chemistry
  • Antibodies, Monoclonal, Humanized
  • Carbocyanines / analysis
  • Carbocyanines / chemistry
  • Cell Line, Tumor
  • Cetuximab
  • ErbB Receptors / analysis*
  • Flow Cytometry
  • Mice
  • Mice, Inbred Strains
  • Molecular Probes / analysis
  • Molecular Probes / chemistry
  • Neoplasms / diagnosis*
  • Neoplasms / diagnostic imaging
  • Radionuclide Imaging
  • Receptor, ErbB-2 / analysis*
  • Trastuzumab

Substances

  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • CY5.5 cyanine dye
  • Carbocyanines
  • Molecular Probes
  • indotricarbocyanine
  • EGFR protein, human
  • ErbB Receptors
  • Receptor, ErbB-2
  • Trastuzumab
  • Cetuximab