GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines

J Biol Chem. 2008 Jan 11;283(2):726-32. doi: 10.1074/jbc.M705343200. Epub 2007 Nov 8.

Abstract

Glycogen synthase kinase-3beta (GSK-3beta) can participate in the induction of apoptosis or, alternatively, provide a survival signal that minimizes cellular injury. We previously demonstrated that the multikinase inhibitor sorafenib induces apoptosis in melanoma cell lines. In this report, we show that sorafenib activates GSK-3beta in multiple subcellular compartments and that this activation undermines the lethality of the drug. Pharmacologic inhibition and/or down-modulation of the kinase enhances sorafenib-induced apoptosis as determined by propidium iodide staining and by assessing the mitochondrial release of apoptosis-inducing factor and Smac/DIABLO. Conversely, the forced expression of a constitutively active form of the enzyme (GSK-3beta(S9A)) protects the cells from the apoptotic effects of the drug. This protective effect is associated with a marked increase in basal levels of Bcl-2, Bcl-x(L), and survivin and a diminution in the degree to which these anti-apoptotic proteins are down-modulated by sorafenib exposure. Sorafenib down-modulates the pro-apoptotic Bcl-2 family member Noxa in cells with high constitutive GSK-3beta activity. Pharmacologic inhibition of GSK-3beta prevents the disappearance of Noxa induced by sorafenib and enhances the down-modulation of Mcl-1. Down-modulation of Noxa largely eliminates the enhancing effect of GSK-3 inhibition on sorafenib-induced apoptosis. These data provide a strong rationale for the use of GSK-3beta inhibitors as adjuncts to sorafenib treatment and suggest that preservation of Noxa may contribute to their efficacy.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Apoptosis / drug effects*
  • Benzenesulfonates / pharmacology*
  • Cell Adhesion / drug effects
  • Cell Death / drug effects
  • Cell Line, Tumor
  • Glycogen Synthase Kinase 3 / pharmacology*
  • Glycogen Synthase Kinase 3 beta
  • Humans
  • Melanoma
  • Mitochondria / drug effects
  • Mitochondria / physiology
  • Niacinamide / analogs & derivatives
  • Phenylurea Compounds
  • Protein Kinase Inhibitors / pharmacology*
  • Pyridines / pharmacology*
  • Sorafenib

Substances

  • Benzenesulfonates
  • Phenylurea Compounds
  • Protein Kinase Inhibitors
  • Pyridines
  • Niacinamide
  • Sorafenib
  • GSK3B protein, human
  • Glycogen Synthase Kinase 3 beta
  • Glycogen Synthase Kinase 3