Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies

Cancer. 2007 Dec 15;110(12):2614-27. doi: 10.1002/cncr.23086.

Abstract

Cancer immunotherapy centers on modulating the host's tumor-directed immune response. One promising approach involves augmentation of cell-mediated immunity by interrupting T-cell pathways responsible for immune down-regulation or tolerance. The discovery of cytotoxic T-lymphocyte antigen-4 (CTLA-4) and its role as a key negative regulator for T cells has prompted efforts to target this signaling molecule to improve cancer therapy. Activation, or 'priming', of naive T cells in response to tumor-cell invasion comprises a dual-signaling mechanism. Signal 1 requires tumor-associated antigen recognition by the T-cell receptor, while signal 2 occurs through binding of CD80 or CD86 (B7.1 of 2) on the antigen presenting cell (APC) with CD28 on the T cell. Importantly, there is a final step responsible for naturally occurring immune regulation; this occurs in response to competitive binding of CD80/CD86 on the APC by CTLA-4 on the T cell. This 'immune checkpoint' interrupts signal 2 and inhibits the activated T cell. Targeting CTLA-4 as an anticancer strategy: Following proof-of-concept studies in animals, fully human anti-CTLA-4 antibodies were developed and 2 are undergoing clinical evaluation. Ipilimumab and tremelimumab have shown promising antitumor activity, initially in patients with advanced melanoma. Class-specific immune-related adverse events (irAEs) were common and mostly transient and/or manageable. These events are thought to be mechanism-of-action-related, indicating immune tolerance is broken; this relation may also explain the association between irAEs and response seen in several trials. Interruption of immune inhibitory pathways via CTLA-4 blockade appears to be a promising strategy for cancer immunotherapy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Algorithms
  • Animals
  • Antibodies, Monoclonal / therapeutic use*
  • Antibodies, Monoclonal, Humanized
  • Antigens, CD / immunology*
  • Antigens, Differentiation / immunology*
  • CTLA-4 Antigen
  • Clinical Trials as Topic
  • Drug Delivery Systems
  • Humans
  • Immune Tolerance
  • Ipilimumab
  • Melanoma / immunology
  • Melanoma / therapy*
  • Mice
  • Skin Neoplasms / immunology
  • Skin Neoplasms / therapy*

Substances

  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • Antigens, CD
  • Antigens, Differentiation
  • CTLA-4 Antigen
  • CTLA4 protein, human
  • Ctla4 protein, mouse
  • Ipilimumab
  • tremelimumab