Autophagy is postulated to play a role in antiviral innate immunity. However, it is unknown whether viral evasion of autophagy is important in disease pathogenesis. Here we show that the herpes simplex virus type 1 (HSV-1)-encoded neurovirulence protein ICP34.5 binds to the mammalian autophagy protein Beclin 1 and inhibits its autophagy function. A mutant HSV-1 virus lacking the Beclin 1-binding domain of ICP34.5 fails to inhibit autophagy in neurons and demonstrates impaired ability to cause lethal encephalitis in mice. The neurovirulence of this Beclin 1-binding mutant virus is restored in pkr(-/-) mice. Thus, ICP34.5-mediated antagonism of the autophagy function of Beclin 1 is essential for viral neurovirulence, and the antiviral signaling molecule PKR lies genetically upstream of Beclin 1 in host defense against HSV-1. Our findings suggest that autophagy inhibition is a novel molecular mechanism by which viruses evade innate immunity and cause fatal disease.