Quasi-phase-matched (QPM) GaAs structures, 0.5 mm thick, 10 mm long, and with 61-mum grating periods, were grown by a combination of molecular-beam epitaxy and hydride vapor phase epitaxy. These were characterized by use of mid-IR second-harmonic generation (SHG) with a ZnGeP(2) (ZGP) optical parametric oscillator as a pump source. The SHG efficiencies of QPM GaAs and QPM LiNbO(3) were directly compared, and a ratio of nonlinear coefficients d(14)(GaAs)/d(33) (LiNbO(3))=5.01+/-0.3 was found at 4.1-mum fundamental wavelength. For input pulse energies as low as 50muJ and approximately 60-ns pulse duration, an internal SHG conversion efficiency of 33% was measured in QPM GaAs.