The thymus generates major histocompatibility complex (MHC)-restricted alphabetaT cells that only recognize antigenic ligands in association with MHC or MHC-like molecules. We hypothesized that MHC specificity might be imposed on a broader alphabetaTCR repertoire during thymic selection by CD4 and CD8 coreceptors that bind and effectively sequester the tyrosine kinase Lck, thereby preventing T cell receptor (TCR) signaling by non-MHC ligands that do not engage either coreceptor. This hypothesis predicts that, in coreceptor-deficient mice, alphabeta thymocytes would be signaled by non-MHC ligands to differentiate into alphabetaT cells lacking MHC specificity. We now report that MHC-independent alphabetaT cells were indeed generated in mice deficient in both coreceptors as well as MHC ("quad-deficient" mice) and that such mice contained a diverse alphabetaT cell repertoire whose MHC independence was confirmed at the clonal level. We conclude that CD4 and CD8 coreceptors impose MHC specificity on a broader alphabetaTCR repertoire during thymic selection by preventing thymocytes from being signaled by non-MHC ligands.