Over the past decade numerous genomes of pathogenic bacteria were fully sequenced and annotated, while others are continuously being sequenced and published. To date, the sequences of >440 bacterial genomes are publicly available for research purposes. These efforts in high-throughput sequencing parallel major improvements in methods permitting the study of whole transcriptome and proteome of bacteria. This provides a basis for a comprehensive understanding of the bacterial metabolism, adaptability to the environment, regulation, resistance pathways, and pathogenicity mechanisms of pathogens. Staphylococcus aureus is a Gram-positive human pathogen causing a wide variety of infections ranging from benign skin infections to life-threatening diseases. Furthermore, the spreading of multiresistance strains requiring the use of last-barrier drugs has resulted in the medical and scientific community focusing particularly on this pathogen. We describe here proteomic methods to prepare, identify, and analyze protein fractions, allowing the study of S. aureus on the organism level. Coupled with methods analyzing the whole bacterial transcriptome, this approach might contribute to the development of rapid diagnostic tests and to the identification of new drug targets.