The ability to selectively deplete or enrich cells of specific phenotype by immunomagnetic selection to reduce the risk of GVHD holds significant promise for application in adoptive immunotherapy. Current clinical-scale approaches for T-cell depletion (e.g., CD34(+) selection, CD3(+) depletion), usually deplete gammadelta T cells, which may be advantageous in mediating graft-versus-tumor (GVT) effects and augmenting the innate immune response against infections. Here, we present a new method for depletion of T cells with potential GVHD reactivity by using a single-step immunomagnetic protocol, which efficiently depletes CD4(+) and CD8(+) alphabeta T cells under good manufacturing practice (GMP) conditions. Depletion from unstimulated leukapheresis products (n=6) containing up to 2.0 x 10(10) cells showed high efficiency (mean log depletion of CD4(+) cells: 4.12, CD8(+) cells: 3.77). In addition, immunomagnetic CD4/CD8 depletion resulted in passive enrichment of innate lymphocytes (mean recovery of natural killer (NK) cells: 38%, gammadelta T cells: 50%). We demonstrated that gammadelta/NK cells preserved their proliferative and cytotoxic capacity and conclude that simultaneous large-scale depletion of CD4(+)/CD8(+) T cells is feasible and can be performed under GMP conditions with high-depletion efficacy for alphabeta T cells and recovery of functionally intact innate effector lymphocytes for potential use in adoptive immunotherapy studies.