Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in insulin secretion by pancreatic beta-cells. The most compelling evidence of this comes from features of the hyperinsulism/hyperammonemia (HI/HA) syndrome where a dominant mutation causes the loss of inhibition by GTP, and from studies that link leucine (and its analogue BCH) activation of GDH to stimulation of insulin secretion. This suggests that GDH may represent a new and novel drug target to control a variety of insulin disorders. Recently we demonstrated that a subset of green tea polyphenols are potent inhibitors of glutamate dehydrogenase in vitro and can efficaciously block BCH stimulation of insulin secretion. In these current studies, we extend our search for GDH inhibitors using high throughput methods to pan through more than 27,000 compounds. A number of known and new inhibitors were identified with IC50s in the low micromolar range. These new inhibitors were found to act via apparently different mechanisms with some inhibiting the reaction in a positively cooperative manner, the inhibition by only some of the compounds was reversed by ADP, and one compound was found to stabilize the enzyme against thermal denaturation. Therefore, these new compounds not only are new leads in the treatment of hyperactive GDH but also are useful in dissecting the complex allosteric nature of the enzyme.