Olive pollen has a complex allergenic profile, from which more than 10 allergens have been identified and characterized. Some of these belong to well-known protein families and others cannot be included in reported biochemical types. Most of these allergens have been produced by recombinant technology, mainly in Escherichia coli or in Pichia pastoris, and they are good candidates for diagnostic and therapeutic purposes. Diagnosis and immunotherapy of allergy currently use extracts prepared from homogenates of natural sources, which only allow us to detect sensitivity to the complete source. These extracts can be successfully replaced by mixtures with controlled amounts of specific allergenic proteins obtained by recombinant technology in order to define the sensitization profile of individual patients. Recombinant Ole e 1 can be used as a marker for sensitization to Oleaceae. Recombinants Ole e 2 (profilin) and Ole e 3 (polcalcin) can serve as markers of polysensitivity. Finally, recombinant forms of Ole e 6, Ole e 10, and the carboxy-terminal and amino-terminal domains of Ole e 9 would help to detect sensitization to these minority allergens that could be overlooked in the complete olive pollen extract. These recombinant molecules can help provide an accurate diagnosis of sensitivity to individual allergens and, therefore, improve the design of more efficacious allergen-based immunotherapy strategies.