Steroidogenic factor SF-1, a constitutively active nuclear hormone receptor, is essential to the development of adrenal and gonadal glands and acts as a shaping factor of sexual determination and differentiation. Its effects are exerted primarily through the control of the synthesis of steroid hormones. The functional cell-based assay Receptor Selection and Amplification Technology (R-SAT) was used to identify potent and selective SF-1 inverse agonists through the screening of a chemical library of drug-like small-molecule entities. Among them, 4-(heptyloxy)phenol (AC-45594), a prototype inverse agonist lead, was used to show that SF-1 constitutive activity can be pharmacologically modulated by a synthetic ligand. In a physiological system of endocrine function, the expression of several reported SF-1 target genes, including SF-1 itself, was inhibited by treatment with AC-45594 and analogs. Thus, pharmacological modulation of SF-1 is critical to its function as an endocrine master regulator and has potentially important consequences to diseases in which SF-1 activity is critical.