Intracerebral hemorrhage (ICH) is a devastating and relatively common disease affecting as many as 50,000 people annually in the United States alone. ICH remains associated with poor outcome, and approximately 40-50% of afflicted patients will die within 30 days. In reports from the NIH and AHA, the importance of developing clinically relevant models of ICH that will extend our understanding of the pathophysiology of the disease and target new therapeutic approaches was emphasized. Traditionally, preclinical ICH research has most commonly utilized two paradigms: clostridial collagenase-induced hemorrhage and autologous blood injection. In this article, the use of various species is examined in the context of the different model types for ICH, and a mechanistic approach is considered in evaluating the numerous breakthroughs in our current fund of knowledge. Each of the model types has its inherent strengths and weaknesses and has the potential to further our understanding of the pathophysiology and treatment of ICH. In particular, transgenic rodent models may be helpful in addressing genetic influences on recovery from ICH.